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Functionals in the Variational Method Applied to
Equivalent Impedance Matrix of Metallic Posts
Unsymmetrically Positioned in a Rectangular
Waveguide

Takashi Toyama and Eikichi Sawado

Abstract—New functionals for calculation of a variational
method of equivalent impedance matrix elements of a metallic
post have been proposed, in which the cross section shape of
the metallic post can be arbitrary, and the post can be placed
at an arbitrary position in a rectangular waveguide. The func-
tionals are also applicable to a group of metallic posts placed
unsymmetrically on the z = constant plane.

I. INTRODUCTION

THE TOPIC of metallic posts in a rectangular wave-
guide has been treated by a variety of methods [1]-
[11]. Among them, the variational method proposed by
Schwinger [1] is characterized in two points. First, the
equivalent impedance matrix elements of a metallic post
in a rectangular waveguide operated at TE, mode are ex-
pressed in such a functional that they are stationary with
respect to arbitrary small variations of the current distri-
bution on the post about its correct distribution. Second,
the matrix elements are directly obtained without the cal-
culation of the current distribution, due to the special form
of the functional [1], [2].

Considering that, in the usual variational method, the
stationary condition in the numerical treatment deter-
mines the expansion coeflicients of the stationary function
first, by means of which the stationary value of the func-
tional is obtained, Schwinger’s method is excellent for the
reason that the matrix elements are directly obtained.

However, the application of Schwinger’s method is re-
stricted in that the cross section shape of the post must be
symmetrical as follows. ‘

In his method, the incident wave to the post is suitably
chosen to satisfy the boundary condition on the side walls
of the waveguide. The wave is scattered by the post, and
the total field created by the incident wave and the scat-
tered wave yields the field in the waveguide. The scat-
tered wave is expressed as the sum of two Green’s func-
tions. Two types of summing are used, one making an
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Fig. 1. A group of metallic posts unsymmetrically positioned in a rectan-
gular waveguide.

even function, and the other an odd function on the z =
0 plane. The concept of the even and the odd function
plays an important role in treating the scattering problem
by the variational method of his theory. Since Green’s
function G(r, r") gives the field at r produced by a current
element of Dirac’s delta function at ', both of the even
and the odd functions, which are obtained by summing
two Green’s functions, require two current sources posi-
tioned symmetrically on the z = O plane. In addition, his
treatment requires the boundary condition of the metal
surface at any point where the current source exists. These
two requirements determine the shape of the cross section
of the metallic post to be symmetrical on the z = 0 plane.

The purpose of this paper is to remove the restriction
of the functional of Schwinger’s method, while maintain-
ing its excellent form. The new functionals proposed in
this paper can be applied to a metallic post, which has an
arbitrary cross section shape and is placed at an arbitrary
position. These functionals can also be applied to a group
of metallic posts, which are positioned unsymmetrically
as shown in Fig. 1.

II. THE VARIATIONAL PRINCIPLE
According to Schwinger’s method [1], when the fol-
lowing equation

hx',z2',x,2) = h(x,z,x', 2") (D
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holds, the following two equations

1/p = S S, ZDKx', z') dS’ 2)

f(xC’ ZC) = S h(xc’ anx,’ Z/)K(xl’ ZI) dS’ (3)
are equivalent to the variational problem, in which

S hx,z, x', 2 )K(x, )K(x', 2') dS dS’

c

p =pK) = 3
<S S, 2K, z") dS’>

“4)

is a functional, or a mapping from a function space of K
into the field of scalars of p, and the correct K gives the
stationary value of p.

From a mathematical point of view, &, p, f, and K can
be anything. In Schwinger’s method, and also in this pa-
per, p is an element of impedance or admittance matrix,
and K is the electric current distribution. Each element of
impedance or admittance matrix is expressed in the form
of (4) makes it possible to obtain the value of the element
directly without the calculation of K.

Accordingly, the purpose of this paper is to find the
functions f and &, or to determine the functional p(K),
which are applicable to the unsymmetrical cases.

III. DETERMINATION OF THE PARAMETERS OF AN
EoQuivaLeENT CirculT

Using the voltage and current of an equivalent trans-
mission line (see Appendix), the discontinuity is ex-
pressed by the impedance matrix, z,;, Z12, Zp; and zp,.
Since z;; is the ratio of V), to Iy with I, being zero, the
following equations are obtained:

B sin (mx’ /a)e ™K (x’, z') dS’  (5)

ob

1/xa) |
-+ 1/(Q2i/ka)zyy)

Sb sin (wx' /a) cos kz’ (K(x', ") /Vip) dS’ (6)

where (2i/ka)z;; corresponds to p, and sin (wx'/a) cos
kz' to f(x’, z") in (2). Since V), is independent of x' and
z', K(x', 2"y /Vy, can be assumed to be the current den-
sity K(x', z7).

In order to obtain the equation corresponding to (2),
first, let us substitute (5) to the boundary condition (see
Appendix). Then,

—A sin (nx,,/a) cos kz,,

= (1/ka) sin (wx,,/a) sin kz,,
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X S sin (7x' /a)e ™' K(x', z') dS’
ob

+ SbG(xob, Zops X', 2DK(x', 2"y dS"  (T)

is obtained. Second, reforming the equation of V,, (see
Appendix) as follows:

Vie — (i /xa) S sin (wx' /a) e"™'K(x', 2’y dS' = A
b

e}

(8

and multiplying (7) by (8), and then, after rearrangement
the following equation is obtained:

—A sin (mx,/a) cos kzp * Vig

= A(1/ka) sin (wx,,/a) sin kz,,

XS sin (mx’ /a)e ™ K(x', z') dS’
ob

+ A ‘s‘ Gxpps Zops X', 2K, 2') dS’
ob

—A sin (wx,,/a) cos «kz,,

X (i /xa) S sin (mx' /a)e™™'K(x', z') dS’

ob
&)
And finally, dividing (9) by —A4 - V;,, we obtain,

sin (wx,,/ @) cos Kz,

= Sob hopy Zony X', 2"V (K(x', 27) [ Vi) dS’  (10)
where
hix,z,x',2")

= (i/xa) sin (wx/a) sin (wx’ /a) sin kz sin xkz’
+ (i/ka) sin (wx/a) sin (mx'/a) cos kz cos kz'
-G, z3x',2")
— (1/«a) sin (ax /a) sin (7x'/a)
X (sin «z cos kz' + cos «z sin kz ") an

Equation (11) satisfies (1), and then, this supports that (2)
and (3) can be treated by the variational analysis.

Since (6) and (10) correspond to (2) and (3), respec-
tively, the functions p, fand % in (4) are given as follows:

p = Qi/ka)zy (12)
f = sin (wx/a) cos kz (13)
zzz)
h = —(2/xa) sin (zx/a)
- sin (wx'/a) cos kz sin kz’ — G2 (14)
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TABLE 1
FUNCTIONALS

LAY

p = Qi/xa)zy,

f = sin (xx/a) cos kz

h = —(2/ka) sin (xx/a) sin (xx' /a) cos kz sin xz’ — G2
@zz")

= —(2/ka) sin (wx/a) sin (xx'/a) sin kz cos kz' — G2
=12

in

p= —(2i/Ka)Z22
f = sin (xx/a) cos kz
h = (2/xa) sin (xx/a) sin (7x' /a) sin xz cos k7' — G2
(zz 2"
= (2/ka) sin (7x /a) sin (ax’ /a) cos «kz sin kz' — G2
=12

Yi
—(2/Ka)}’11
sin (wx /a) sin kz
i((2/xa) sin (wx/a) sin (wx' /a) sin kz cos kz’ — G2)
(zzz")
= i((2/xa) sin (wx/a) sin (xx' /a) cos kz sin k7' — G2)
z=1z)

p
f
h

oy

G2(x,z;x', 2')
= (i/a) 7., sin (nwx/a) sin (nax’ Ja)e™ =7 [k,

=12
h = —(2/«a) sin (7x/a)
(15)

where G2 is Green’s function, with the first term dis-
 carded, as follows:

- sin (mx'/a) sin kz cos kz' — G2

G2(x,z;x',2") = (i/a) Z]z sin (nwx /a)

+ sin (nax’ Jaye™ =7 /i, (16)

For z,, the same procedure has been used, and similar |
functions have been obtained.

In case of z;,, however, the function h obtained does
not satisfy (1). This makes it impossible to treat the prob-
lem by the variational analysis. Comparison of the pro-
cedure for z;; with that for z,, implies that the function A
for y,, might satisfy (1). Accordingly, we tried to find the
functional for y;;, and the functional was successfully ob-
tained. The matrix element z;, is, then, calculated by the
equation, zi, = —2» * Zu + /Y1

All the functions and functionals obtained are shown in
Table 1.

IV. COMPUTATIONAL PROCEDURE

It is well-known that the series in (16) converges
slowly. In place of (16), for rapid convergence, the series
shown in the reference [10] is used in the present paper.
The summation of the series in the present paper is per-
formed with » from 2 to 100.

The integration of G2(r, r')K(r) which is involved in
h(r, rK(PK(r') in (4) is performed as the summation
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of G2(r, r")K(r) AS in the computer program. Although
(16) shows that G2(r, r') is infinite at r = r’', the inte-
gration of G2(r, r') + K(r) is finite, because this integra-
tion also appears in (3) and the value obtained by the in-
tegration is a physical quantity. Accordingly, it is
expected that the summation of G2(r, r') - K+ ASin the
vicinity of r = r’ can be expressed by a converging se-
ries. In order to obtain the series the S-coordinate around
the point at r = r’ was divided in such a way that the
amount of each AS is selected as the half of the adjacent
AS, as § approaches the point. By this selection the ratio
of the (n + Dth term of G2(r, r’) - K(r) - AS to the nth
term becomes less than one and decreases as n increases.
It is well known that the series is convergent when this
relation between two adjacent terms holds.

The summation of the series in the computer program
was performed until the value of G2(r, r’) overflowed,
twenty terms usually being summed. The amount of error
is due to whether or not the series sufficiently converges
before the overflow occurs.

The variational analysis is performed by Ritz’s method.
The function K(r, r') is expanded in a Fourier series, with
each coefficient being A4,, and the stationary condition is
expressed by the derivative of p with respect to any of the
coefficients A, being zero [1]. In the present paper the
expansion is performed with n from 1 to 7. The special
form of (4) makes it possible to obtain the stationary value
of p without obtaining the coefficients A,,.

When further precision is required, the techniques men-
tioned above and the others used in the computer pro-
grams should be improved.

V. RESULTS

Our method is compared to Schwinger’s method in the
following examples. Examples from 1) to 2) treat a me-
tallic post. Each example shows a good coincidence be-
tween two treatments. Examples from 3) to 4) treat two
metallic posts. Example 5) treats a rectangular post.

1) A metallic post, the cross section of which is sym-
metrical, is treated by both methods.

As an example, 9.5 GHz microwave travelling in a
WRIJ-10 waveguide (Waveguide Rectangular Japanese in-
dustrial standard) is chosen. A circular metallic post is
placed 0.4a from the waveguide side wall, where ‘“‘a’’ is
the inside width of the waveguide. The equivalent imped-
ance matrices of four different radii are calculated.

Table II shows the comparison of the equivalent imped-
ance matrix calculated by our method with that by
Schwinger’s method [11]. The result by our method shows
that z,; is ecual to zy, in their absolute values. This rela-
tion is due to the fact that the cross section of the post is
symmetrical. In Schwinger’s method, on the other hand,
the relation has already been used in the theoretical pro-
cess of obtaining the functional.

2) Equivalent parameters on the z = 0 plane of a cir-
cular post placed at z = d as shown in Fig. 2 are calcu-
lated by both methods.
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TABLE II
EQUIVALENT IMPEDANCE MATRIX ELEMENTS OF A CIRCULAR METALLIC
POST IN A RECTANGULAR WAVEGUIDE CALCULATED BY BOTH METHODS

Radius 211 222 Y 212

0.01a 0.7351i —0.7351i 0.247 x 10*3% —0.737i
0.02a 0.529{ —0.5291i 0.775 x 10*% —0.535i
0.035a 0.355¢ —0.3551i 0.172 x 10%% ~-0.383i
0.06a 0.171¢ -0.171i 0.727 x 10%Y —0.229i

(a) Our method

Radius Zn Z12

0.01a 0.740i —-0.742i
0.02a 0.533i —0.541i
0.035a 0.358i —0.358i
0.06a 0.169i —-0.237i

(b) Schwinger’s method

I
As Ba

Ca Us
I

At Bt
Ce Dt

/=0 Z=(
()
l
Ab Bb At Bt
Co Do Ce Dt
|
/=0 7=d

(b)

Fig. 2. Symmetrical and unsymmetrical treatments of a symmetrical post.
(a) Symmetrical treatment (Schwinger’s method). (b) Unsymmetrical treat-
ment (Our method).

By Schwinger’s method the four-terminal constants, A,
B,, C, and D,, of the equivalent circuit of the post are
calculated at the z = d plane, because the post is sym-
metrical about the plane, and then, they are converted to
the four-terminal constants, 4, B, C, and D, on the z =
0 plane by combining with the equivalent parameters, 4,,
B,, C, and D,, of the transmission line between z = 0 and
z=d.

On the other hand, by our method, the four-terminal
constants, A,, B,, C, and D,, of the post are calculated
on the z = 0 plane. Since the circular post placed at z =
d is not symmetrical on the z = O plane, this treatment is
possible only by our method. And then, the equivalent
parameters, 4,, B,, C, and D, of the transmission line are
combined.
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TABLE III
EQUIVALENT FOUR-TERMINAL CONSTANTS ATZ = 0
d/a A B C D
0.0 -0.9422 0.04255 2.637 —-0.9422
—0.9422 0.04255 2.637 —0.9422
0.4 -2.788 —0.9022 —0.2585 —0.2750
—2.788 —~0.9022 —0.2585 —0.2750
0.8 —0.4414 —0.4903 —2.765 0.8058
—0.4414 —0.4903 —2.765 0.8058
1.2 2.5690 0.6589 —-1.114 0.6749
2.5690 0.6589 ~-1.114 0.6749
1.4 2.7123 0.9343 0.6954 0.1291
2.7123 0.9343 0.6954 0.1291

Upper row indicates Schwinger’s method.
Lower row indicates our method.

The four-terminal constants obtained for various d/a
are shown as 4, B, C, and D in Table III, the upper row
being the result by Schwinger’s method and the lower one
being that by our method. Both results are of a good co-
incidence.

3) The case of two circular metallic posts placed un-
symmetrically as shown in Fig. 3 are treated by both
methods.

By Schwinger’s method, each post is treated as a sym-
metrical case, and the parameters of two posts are com-
bined together with the parameters of the transmission line
between the posts.

On the other hand, our theory can treat two posts con-
currently. The current density K along the S-axis in the
integration of (4) is, however, usually discontinuous as
shown in Fig. 4. Accordingly, the current density K is
expanded into the series of orthogonal functions inde-
pendently on each post, in order to obtain a more accurate
result.

When two posts are placed far apart, the evanescent
modes of each post do not interfere with each other, and
Schwinger’s method gives the correct result.

In this example the transmission line is terminated by
the characteristic impedance of the line, and the reflection
coeflicient vs. frequency for various z, are calculated with
d = d, = 0.07a, x; = 0.4a, x, = 0.2a as shown in Fig.
5. The two methods give almost the same results, since
the distance between two posts is still large even when z,
is zero. Then, it can be said that plural obstacles placed
on the same z = constant plane can be treated indepen-
dently when they are sufficiently separated in the
x-direction.

4) The circular posts as used in the example 3) are
placed with x, = 0.365a. In this case the evanescent
modes of the posts interfere with each other when z, de-
creases, and they make it impossible to treat the posts as
two independent symmetrical posts.

Fig. 6 shows that the result of Schwinger’s method does
not coincide with that of our method when z, is small.

5) The equivalent parameters of a rectangular post is
calculated.
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Fig. 3. Geometry of two posts.
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Fig. 4. Current density distribution on two posts.

Reflection Coefficient
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0.5
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8.0 8.0 10.0 11.0

Frequency (GHz)

12.0

Fig. 5. Reflection coefficient of two metallic posts placed unsymmetrically
(x, = 0.2a).

The geometry of the post is shown in Fig. 7, where ¢ is
the angle of inclination. When 7 is not zero and x, is not
a/2, the cross section of the post is unsymmetrical on the
z = constant plane, and only our method can treat it.

The calculation is performed with r = 0.035a, ¢, = 2r
+ 0.02a, t = 7 /6 (radian), x, = 0.4a, The results for
various ¢, are shown in Fig. 8.

A rectangular post with ¢; = ¢, = 2r is nothing but a
circular post, and it can be easily ascertained that the re-
sult obtained is coincident with that by Schwinger’s
method.
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Reflection Coefficient
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8.0 9.0 10.0 1.0

Frequency (GHz)

12.0

Fig. 6. Reflection coefficient of two metallic posts placed unsymmetrically
(x; = 0.365a).
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20D
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Fig. 7. Geometry of a rectangular post in a waveguide.

Impedance Matrix Elements

Z12

10.51 7 In
Z12

0 PAT]

22

-0.51 I
8.0 9.0 10.0 1.0 12.0 13.0

Frequency (GHz)

Fig. 8. Impedance matrix elements of a rectangular post.

VI. CoNCLUSION

Functionals for variational method, which are applica-
ble to calculate the equivalent impedance matrix elements
of metallic posts of arbitrary shape, number and position,
have been presented. Each functional relates the current
distribution on the metallic post to an impedance or ad-
mittance matrix element and the functional has the form
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which makes it possible to obtain the stationary value by
Ritz’s method without obtaining the stationary function.
The results calculated by the presented functionals were
compared with those by Schwinger’s method and they are
of good coincidence for the symmetrical cases.

APPENDIX
The field ¢(x, z) in the waveguide with obstacles is
given as follows:

é(x, 7) = A sin (7x/a) cos kz + B sin (nx/a) sin kz
+ S G, z;x',z') Kx', 2')dS"  (A-1)
ob

where the sum of the first two terms is the incident field,
K2 =k? — (nw/a)*, ¥ = ki, k* = w’ep, in the third term
K is the induced current density which is constant along
the y axis, the subscript ob stands for obstacle, and G(x,
z; x', ') is Green’s function:

Gix, z3x',2')
= (i/a) 21 sin (nax /a) sin (nwx' /a)e™ =2 /x,

(A2)

Applying the boundary condition on the surface of the
metallic post to (A1),

0 = A sin (mx,,/a) cos kz,, + B sin (mx,, /a) sin kz,,

" Sb G (s Zaps ' 2') K(x', 2') dS’ (A3)
is obtained.

Under the condition that only the lowest mode ¢, can
travel, (A1) gives:

brow®, 2) = sin (mx/a) - V(z) (A4)

where

V(z) = A cos kz + B sin kz
+ (i/ka) g sin (mx' /a)e™ K (x’, 2') dS".
ob

(AS)

Removing the influence of the evanescent modes in V(z)
by letting z be infinity, and then using the relation of
0V /dz = —ixZyl, and finally letting z be zero, the left
side voltage V}, and the current I, adjacent to the discon-
tinuity and also the right side voltage V,, and the current
L, are obtained as follows:

Vio = 4 + (i/xa) S sin (wx' /@) e K@, 2') dS’
b

[

(A6)

Voo = A + (i/xa) S sin (mx’ /a)e ™ K(x', z') dS’
b

Ol

(A7)
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Lo = iB + (i/ka) Sob sin (7x'/a)et™ ™ K(x', ') dS’
(A8)
Ly = iB — (i /«a) Sob sin (7x' /a)e "' K(x', z') dS'
(A9)
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