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Functional in the Variational Method Applied to

Equivalent Impedance Matrix of Metallic Posts

Unsymmetrically Positioned in a Rectangular

Waveguide
Takashi Toyama and Eikichi Sawaclo

Abstract—New functional for calculation of a variational
method of equivalent impedance matrix elements of a metallic
post have been proposed, in which the cross section shape of
the metallic post can be arbitrary, and tine post can be placed
at an arbitrary position in a rectangular ‘waveguide. The func-
tional are also applicable to a group of metallic posts placed

unsymmetrically on the z = constant plane.

I. INTRODUCTION

T HE TOPIC of metallic posts in a rectangular wave-

guide has been treated by a variety of methods [l]-

[11]. Among them, the variational method proposed by

Schwinger [1] is characterized in two points. First, the

equivalent impedance matrix elements of a metallic post

in a rectangular waveguide operated at TEIO mode are ex-

pressed in such a functional that they are stationary with

respect to arbitra~ small variations c}f the current distri-

bution on the post about its correct distribution. Second,

the matrix elements are directly obtained without the cal-

culation of the current distribution, due to the special form

of the functional [1], [2].

Considering that, in the usual variational method, the

stationary condition in the numerical treatment deter-

mines the expansion coefficients of the stationary function

first, by means of which the stationary value of the func-

tional is obtained, Schwinger’s method is excellent for the

reason that the matrix elements are directly obtained,

However, the application of Schwinger’s method is re-

stricted in that the cross section shape of the post must be

symmetrical as follows.

In his method, the incident wave to the post is suitably

chosen to satisfy the boundary condition on the side walls

of the waveguide. The wave is scattered by the post, and

the total field created by the incident wave and the scat-

tered wave yields the field in the waveguide. The scat-

tered wave is expressed as the sum clf two Green’s func-

tions. Two types of summing are used, one making an
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Fig. 1, A group of metallic posts unsymmetrically positioned in a rectan-

gular waveguide.

even function, and the other an odd function on the z =

O plane. The concept of the even and the odd function

plays an important role in treating the scattering problem

by the variational method of his theory. Since Green’s

function G(]F, r‘) gives the field at r produced by a current

element of Dirac’s delta function at r‘, both of the even

and the odd functions, which are obtained by summing

two Green’s functions, require two current sources posi-

tioned symmetrically on the z = O plane. In addition, his

treatment requires the boundary condition of the metal

surface at any point where the current source exists. These

two requirements determine the shape of the cross section

of the metallic post to be symmetrical on the z = O plane.

The purpose of this paper is to remove the restriction

of the functional of Schwinger’s method, while maintain-

ing its excellent form. The new functional proposed in

this paper can be applied to a metallic post, which has an

arbitrary cross section shape and is placed at an arbitrary

position. These functional can also be applied to a group

of metallic posts, which are positioned unsymmetrically

as shown in Fig. 1.

II. THE VARIATIONAL PRINCIPLE

According to Schwinger’s method [1], when the fol-

lowing equation

h(x’, z’, x,z) = hk.z>x’, z’) (1)
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holds, the following two equations

!I/p == f(x’, Z’)K(X’, z’) ds’ (2)
c

[
f(xc, Zc) = ~ h(xc, z., x’, Z’)K(X’, .2’) ds’ (3)

are equivalent to the variational problem, in which

!!J+(X, Z, X ‘, Z ‘)K(.T, Z)~(X’, Z ‘) dS dS’

p= p(K)= c

(! )

2

f(x’, z’)K(x’, z’) dS’
c

(4)

is a functional, or a mapping from a function space of K
into the field of scalars of p, and the correct K gives the

stationary value of p.
From a mathematical point of view, h, p, f, and K can

be anything. In Schwinger’s method, and also in this pa-

per, p is an element of impedance or admittance matrix,

and K is the electric current distribution. Each element of

impedance or admittance matrix is expressed in the form

of (4) makes it possible to obtain the value of the element

directly without the calculation of K.
Accordingly, the purpose of this paper is to find the

functions f and h, or to determine the functional p (K),
which are applicable to the unsymmetrical cases.

III. DETERMINATION OF THE PARAMETERS OF AN

EQUIVALENT CIRCUIT

Using the voltage and current of an equivalent trans-

mission line (see Appendix), the discontinuity is ex-

pressed by the impedance matrix, Z1,, Zlz, 221 and 222.

Since Z1~ is the ratio of VIO to ZIO with & being zero, the

following equations are obtained:

!B = (1/~a) ~~sin (m-x ‘/a) e-iKz’K(x’, z’) ds’ (5)

“ l/((2i/Ka)zl,)

.— ! sin (TX ‘/a) cos KZ’ (K(x’, z ‘)/Vlo) dS’ (6)
ob

where (2i/Ka)Zl, corresponds to p, and sin (m’ /a) cos

KZ’ to f (x’, z‘) in (2). Since ~lo is independent of x‘ and

z‘, K(x’, z‘) / F’lo can be assumed to be the current den-

sity K(x’, z ‘).

In order to obtain the equation corresponding to (2),

first, let us substitute (5) to the boundary condition (see

Appendix). Then,

–A sin (7rxOb/a) cos Kzob

= (1 /Ka) sin (7rxO~/a) sin KzOb

x ! sin (ZX ‘/a) e-iKZ’K(x’, z‘) dS’
ob

+ ! G(xob, zo~; X’, z’)K(X’, z ‘) ds’ (7)
ob

is obtained. Second, reforming the equation of VIO (see

Appendix) as follows:

1Vlo – (i/Ku) ~b sin (mx’/a) e+iKz’K(x’, z’) dS’ = A

(8)

and multiplying (7) by (8), and then, after rearrangement

the following equation is obtained:

–A Sin (~xob/a) Ctls Kzob “ ~~o

= A(l /Ka) sin (7rxOb/a) sin KzOb

x ! sin (mx’/a)e–’KK(x(x’, z‘) dS’
ob

+A
i

G(xob, zob; x ‘, Z ‘)K(x ‘, Z ‘) dS’
ob

–A Sin (~xOb/a) (Xls /(zOb

x (i/Ku)
!

sin (7rx’ /a) e +iKZ’K(x,, ~,) ds,

ab

(9)

And finally, dividing (9) by –A . Vlo, we obtain,

sin (~Xob/a) cos /(zOb

——
!

h(xOb, zOb,X ‘, ~’) (K(x’, z ‘)/VIO) ds’ (10)
ob

where

h(x, z, x’, z’)

= (i/Ka) sin (7rx/cz) sin (7rx’ /a) sin KZ sin KZ’

+ (i/Ku) sin (7rx/a) sin (mx’ /a) cos KZ cos KZ’

– G(x, Z; X’, Z’)

– (1 /Ka) sin (7rx/a) sin (7rx’ /a)

x (sin Kz Cos Kz ‘ + Cos KZ sin Kz ‘) (11)

Equation (11) satisfies (l), and then, this supports that (2)

and (3) can be treated by the variational analysis.

Since (6) and (10) correspond to (2) and (3), respec-

tively, the functions p, f and h in (4) are given as follows:

p = (2i/Ka)z*l (12)

f = sin (~x/a) COSKZ (13)

(z~z’)

h = –(2/Ka) sin (7rx/a)

“ sin (TX ‘/a) cos KZ sin KZ’ – G2 (14)
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TABLE I

FUNCTIONAL

z,,

p = (2i/KLZ)Z,,

f = sin (m/a) cos KZ

h = –(2/Ka) Sin (mX/U) sin (TX ‘/a) cos KZ sin kZ’ – G2
(z~z’)

= –(2/Ka) sin (rx/a) sin (7x’ /a) sin KZ cos KZ’ – G2
(z~z’)

p = – (2i/Ka)z22

f = sin (7rx/a) cos .Z

h = (2/tea) sin (mx/a) sin (Tx’ /a) sin KZ cos KZ ‘ – G2

(Z2 Z’)
= (2/Ka) & (~x/a) sin (TX’ /a) cos KZ sin KZ’ – G2

(z~z’)

Y1l

P = –(2/Ka)Y1l
f = sin (7rx/a) sin KZ

h = i((2/Ka) sin (%x/a) sin (ZX’ /a) sin KZ cos KZ’ – G2)
(z~~’)

—— i((2/fia) sln (rX/a) sin (~x’ /a) cos Kz sin Kz’ – G2)
(z~z’)

G2(x, Z; X’, Z’)

= (i/a) E ~=, sin (n7rx/a) sin (n7rx’ /a) e“’l’-”1 /Kn

(~~~’)

h = –(2/Ka) sin (m/a)

sin (TX’ /a) sin w cos K.Z’ — G2 (15)

where G2 is Green’s function, with the first term dis-

carded, as follows:

G2(x, z; x‘, z‘) = (i/a) ~~z sin (rim/a)

* sin (mrx ‘/a) eiK’lz-z’l/K~ (16)

For Zzz the same procedure has been used, and similar

functions have been obtained.

In case of Zlz, however, the function h obtained does

not satisfy (1). This makes it impossible to treat the prob-

lem by the variational analysis. Comparison of the pro-

cedure for Z11 with that for Z12 implies that the function h

for yll might satisfy (l). Accordingly,, we tried to find the

functional for yl,, and the functional was successfully ob-

tained. The matrix element Z12 is, then, calculated by the
equation, z 12 = –222 “ Zll + z22/yll.

All the functions and functional obtained are shown in

Table I.

IV. COMPUTATIONAL PROCEDURE

It is well-known that the series in (16) converges

slowly. In place of (16), for rapid convergence, the series

shown in the reference [10] is used in the present paper.

The summation of the series in the present paper is per-

formed with n from 2 to 100.
The integration of G2(r, r ‘)K(r) which is involved in

h (r, r ‘)K(r)K(r’) in (4) is performed as the summation

of G2(r, r ‘)l((r) AS in the computer program. Although

(16) shows that G2(r, r‘) is infinite at r = r‘, the inte-

gration of G~!(r, r‘) “ K(r) is finite, because this integra-

tion also appears in (3) and the value obtained by the in-

tegration is a physical quantity. Accordingly, it is

expected that the summation of G2 (r, r‘) “ K . A Sin the

vicinity of r = r‘ can be expressed by a converging se-

ries. In order to obtain the series the S-coordinate around

the point at r = r‘ was divided in such a way that the

amount of each AS is selected as the half of the adjacent

AS, as S approaches the point, By this selection the ratio

of the (n + l)th term of G2(r, r’) “ K(r) “ AS to the rzth

term becomes less than one and decreases as n increases.

It is well known that the series is convergent when this

relation between two adjacent terms holds.

The summation of the series in the computer program

was performed until the value of G2 (r, r‘) overflowed,

twenty terms usually being summed. The amount of error

is due to whether or not the series sufficiently converges

before the overflow occurs.

The variational analysis is performed by Ritz’s method.

The function K(r, r’) is expanded in a Fourier series, with

each coefficient being A., and the stationary condition is

expressed by the derivative of p with respect to any of the

coefficients ,4. being zero [1]. In the present paper the

expansion is performed with n from 1 to 7. The special

form of(4) makes it possible to obtain the stationa~ value

of p without obtaining the coefficients A..
When furtlher precision is required, the techniques men-

tioned above and the others used in the computer pro-

grams should be improved.

V. RESULTS

Our methctd is compared to Schwinger’s method in the

following examples. Examples from 1) to 2) treat a me-

tallic post. Uach example shows a good coincidence be-

tween two treatments. Examples from 3) to 4) treat two

metallic posts. Example 5) treats a rectangular post.

1) A metallic post, the cross section of which is sym-

metrical, is treated by both methods.

As an example, 9.5 GHz microwave traveling in a

WRJ-10 wayt?guide (Waveguide Rectangular Japanese in-

dustrial standard) is chosen. A circular metallic post is

placed 0.4a from the waveguide side wall, where “a” is

the inside width of the waveguide. The equivalent imped-

ance matrices of four different radii are calculated.

Table II shows the comparison of the equivalent imped-

ance matrix calculated by our method with that by

Schwinger’s method [11]. The result by our method shows

that Z1~ is ecptal to Z22 in their absolute values. This rela-

tion is due to the fact that the cross section of the post is

symmetrical. In Schwinger’s method, on the other hand,

the relation has already been used in the theoretical pro-

cess of obtaining the functional.

2) Equivalent parameters on the z = O plane of a cir-

cular post placed at z = d as shown in Fig. 2 are calcu-

lated by botlh methods.
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TABLE II

EQUIVALENT IMPEDANCE MATRIX ELEMENTS OF A CIRCULAR METALLIC
POST IN A RECTANGULAR WAVEGUIDE CALCULATED BY BOTH METHODS

Radius Z1l Z22 Yll Z,2

O.Ola 0.7351i –0.7351i 0.247 x 10+3i –0.737i

0.02a 0.529i –0.5291i 0.775 X 10+2i –0.535i

0.035a 0.355i –0.3551i 0.172 x 10+2i –0.383i

0.06a 0.171i –0.171i 0.727 x 10+’i –0.229i

(a) Our method

Radius z,, Z,2

O.Ola 0.740i –0.742i

0.02a 0.533i –0.541i

0.035a 0.358i –0.358i

0.06a 0,169i –0.237i

(b) Schwinger’s method

Z.() Z’=(-J

(a)

EJn:h b At Bt ‘
Cb Db Ct Dt ,

)

Z’o Z=d
(b)

Fig. 2. Symmetrical and unsymmetrical treatments of a symmetrical post.
(a) Symmetrical treatment (Schwinger’s method). (b) Unsymmetrical treat-
ment (Our method).

By Schwinger’s method the four-terminal constants, A.,

B., C. and D., of the equivalent circuit of the post are

calculated at the z, = d plane, because the post is sym-

metrical about the plane, and then, they are converted to

the four-terminal constants, A, B, C, and D, on the z. =

O plane by combining with the equivalent parameters, A,,

B,, C, and D,, of the transmission line between z = O and

z=d.
On the other hand, by our method, the four-terminal

constants, Ab, Bb, cb and Db, of the post are calculated

on the z = O plane. Since the circular post placed at z =

d is not symmetrical on the z = O plane, this treatment is

possible only by our method. And then, the equivalent

parameters, A,, Bf, C, and D1, of the transmission line are

combined.

TABLE 111

EQUIVALENT FOUR-TERMINAL CONSTANTS AT z = O

d/a A B c D

0.0 –0.9422
–0.9422

0.4 –2.788
–2.788

0.8 –0.4414

–0.4414

1.2 2.5690

2.5690

1.4 2.7123
2.7123

0.04255

0.04255

–0.9022
–0.9022

–0.4903
–0.4903

0.6589
0.6589

0.9343
0.9343

2.637
2.637

–0.2585
–0.2585

–2.765

–2.765

–1.114
–1.114

0.6954
0.6954

–0.9422

–0.9422

–0.2750
–0.2750

0.8058

0.8058

0.6749

0.6749

0.1291
0.1291

Upper row indicates Schwinger’s method.

Lower row indicates our method.

The four-terminal constants obtained for various d/a
are shown as A, B, C, and D in Table III, the upper row

being the result by Schwinger’s method and the lower one

being that by our method. Both results are of a good co-

incidence.

3) The case of two circular metallic posts placed un-

symmetrically as shown in Fig. 3 are treated by both

methods.

By Schwinger’s method, each post is treated as a sym-

metrical case, and the parameters of two posts are com-

bined together with the parameters of the transmission line

between the posts.

On the other hand, our theory can treat two posts con-

currently. The current density K along the S-axis in the

integration of (4) is, however, usually discontinuous as

shown in Fig. 4. Accordingly, the current density K is
expanded into the series of orthogonal functions inde-

pendently on each post, in order to obtain a more accurate

result.

When two posts are placed far apart, the evanescent

modes of each post do not interfere with each other, and

Schwinger’s method gives the correct result.

In this example the transmission line is terminated by

the characteristic impedance of the line, and the reflection

coefficient vs. frequency for various Z2 are calculated with

dl = d2 = 0.07a, xl = 0.4a, X2 = 0.2a as shown in Fig.

5. The two methods give almost the same results, since

the distance between two posts is still large even when Z2

is zero. Then, it can be said that plural obstacles placed

on the same z = constant plane can be treated indepen-

dently when they are sufficiently separated in the

x-direction.

4) The circular posts as used in the example 3) are

placed with X2 = O.365a. In this case the evanescent

modes of the posts interfere with each other when Z2 de-

creases, and they make it impossible to treat the posts as

two independent symmetrical posts.

Fig. 6 shows that the result of Schwinger’s method does

not coincide with that of our method when Z2 is small.

5) The equivalent parameters of a rectangular post is

calculated.
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x
\

o. 1’
L-Q---l

Fig. 3. Geometry oft wo posts.

(s)
Post #2

Reflection Coefficient

1.0

0.5 u;, B~:thod

O,60a
O,07a

c~w8~:ger’s

O.60a

0.0
0,07a

‘9.0 9,() 10.0 11.0 !2.0 13,0

Frequency (GHz)

Fig. 6. Reflection coefficient of two metallic posts placed unsymmetrically

(.x, = 0.365a).’

Fig. 4. Current density distribution on two posts.

Reflect Ion Coefficient

1.0.
—-

0.5- Our method
~ 1.80a
o 0.60a
A o 00a

o.oL____-~#ger’’me’hOd
8.0 9.0 10.0 11,0 12.0 1;0

Frequency (GHz)

Fig. 5. Reflection coefficient of two metallic posts placed unsymmetrically

(x, = 0.2a).

The geometry of the post is shown in Fig. 7, where t is

the angle of inclination. When t is not zero and X. is not

a/2, the cross section of the post is unsymmetrical on the

z = constant plane, and only our method can treat it.
The calculation is performed with r = 0.035a, c1 = 2r

+ 0.02a, t = r/6 (radian), X. = 0,4a. The results for

various Cz are shown in Fig. 8.

A rectangular post with c1 = Cz = 2r is nothing but a

circular post, and it can be easily ascertained that the re-

sult obtained is coincident with that by Schwinger’s

method.

method

x

7-

0
Fig. 7. Geometry of a rectangular post in a waveguide.

o

‘C2= 033a
~ C2 = 0.17a

-0.5i -

z 12

z4t

z 12

Ztl

7.22

z 22

8,0 9.0 10.0 11,0 12.0 13.0

Frequency (GHz)

Fig. 8. Impedance matrix elements of a rectangular post.

VI. CONCLUSION

Functional for variational method, which are applica-

ble to calculate the equivalent impedance matrix elements

of metallic posts of arbitrary shape, number and position,

have been presented. Each functional relates the current

distribution on the metallic post to an impedance or ad-

mittance matrix element and the functional has the form
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which makes it possible to obtain the stationary value by

Ritz’s method without obtaining the stationary function.

The results calculated by the presented functional were

compared with those by Schwinger’s method and they are

of good coincidence for the symmetrical cases.

APPENDIX

The field @(x, z) in the waveguide with obstacles is

given as follows:

O(X, Z) = Z4 Sin (7CC/U) cos KZ + B Sin (mX/U) Sin KZ

+ ! G(x, Z; x’, z’) K(X’, .2’) ds’ (A-1)
ob

where the sum of the first two terms is the incident field,

K; = 2 k 2 = L02ep, in the third termk2 – (fz7r/a)2, K2 = K1,

~ is the induced current density which is constant along

the y axis, the subscript ob stands for obstacle, and G (x,

z; x’, z’) is Green’s function:

G(x, z; X’, .?)

– (~/U) ~~1 Sh (7Z2TX/LZ) Sh (~TX ‘/U) ei’nlz ‘“1 /Kn—

(A2)

Applying the boundary condition on the surface of the

metallic post to (Al),

() = A sin (mxO~/a) cos KzOb+ B sin (mxO~/a) Sh Kzob

+
i

G(xob, zo~; X’, z’) ~(X’, Z’) d$” (A3)
ob

is obtained.

Under the condition that only the lowest mode @LOWcan

travel, (A 1) gives:

~Lmv(X, ~) = sin (mX/u) “ ~(~) (A4)

where

V(Z) = A cos KZ + B Sin KZ

+ (i/Ku)
!

sin (7rx’/a)ei’1z -z’1~(x’, z’) d$’.
ob

(AS)

Removing the influence of the evanescent modes in V(Z)

by letting z be infinity, and then using the relation of

dV/i3z = –iKZoZ, and finally letting z be zero, the left

side voltage Vlo and the current ZIOadjacent to the discon-

tinuity and also the right side voltage V20 and the current

Z20are obtained as follows:

Vlo = A + (i/Ku)
J

sin (7rx’ /a) e +i~z’~(x,, z, ~ ~~,

ob

(A6)

VZO = A + (i/Ku)
!

sin (m’ /a) e -iKz’~(xr, # ) dlJ,

ob

(A7)

110 = iB + (i/Ku)
!

sin (7rx’/a)e+iKz’K(x’, Z’) cM’
ob

(A8)

s
Z20 = iB – (i/Ku) ~b sin (mx’/a)e-i’z’IC(x’, z’) d!l’

(A9)
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